CDM Potential of Electric Power Sector and Energy-intensive industries in China

Outcome of 5-Year Joint Study of Keio University/Tsinghua University Sponsored by NEDO (New Energy and Industrial Technology Development Organization) Japan

> Keio University/Tsingua University 3E Joint Project 1999-2003

Members of Joint Research Team

• Keio University

Mitsutsune YAMAGUCHI,
Osamu KAWAGUCHI,
Minoru FUJII,
Yasuhiro KONNO,
Kuniyuki NISHIMURA,
Shuta MANO,Professor, Faculty of Science and Technology
Senior Technical Advisor, Hitachi Engineering Co., Ltd.
Senior Technical Advisor, Hitachi Engineering Co., Ltd.
Research Director, Mitsubishi Research Institute, Inc.

• Tsinghua University

Lu Yingyun, Professor, 3E Research Institute
Liu Deshun, Professor, Institute of Nuclear Energy Technology
Ma Yuqing, Professor, 3E Research Institute
Zhao Yong, Associate Professor, 3E Research Institute
Zhou Sheng, Lecturer, 3E Research Institute
Tong Qing, Assistant Professor, 3E Research Institute

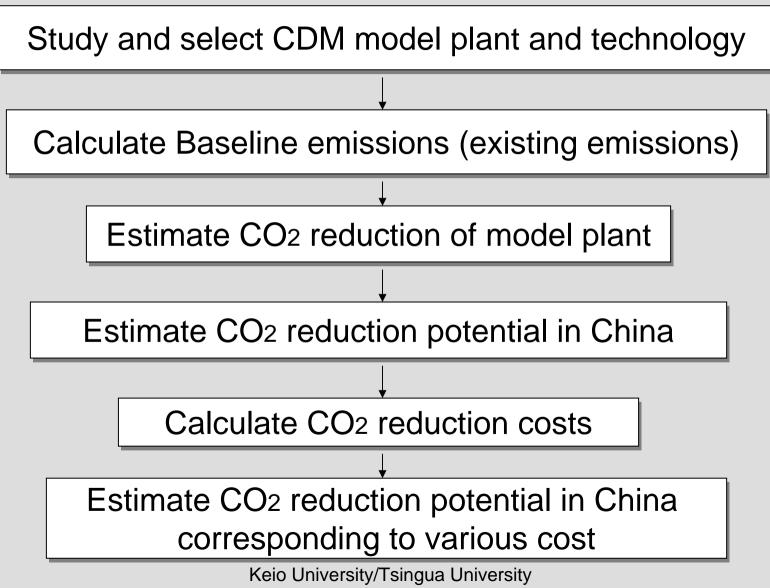
- Members of the 3E CDM Committee in Japan
- Various staffs in Electric Power Companies in China

Purpose of the study

- Contribute sustainable development of China through promoting CDM activities
- Establish a methodology of estimating CO₂ emission reduction potential
- Provide reliable figures of emission reduction potentials and costs of CDM in China to prospective investors worldwide

Characteristics of our study

- Thorough bottom-up approach
- Technology-based
- Based on the actual data (especially in electric power plant cases)
- Intense cooperation of Keio-Tsinghua Universities as well as Academia, Industry and Governments
- Best mix of climate and technology experts, mechanical engineers, research institute, business society of both countries


Targeted sectors and reason

Targeted sectors
 Power Generation
 Iron & Steel
 Paper & Pulp
 Cement
 Oil Refinery and Chemicals

Reason

Major CO₂ emitters

Process of analysis

0E laint Drain at 4000 0000

CDM potential in electric power plants (Keio & Tsinghua U.)

- Collection of basic data of all power plants in North China (Tsinghua University and power plants in North China)
- Classification of power plants

Group 1: 50 MW unitsScrap & Build OptionGroup 2: 100, 200 MW unitsModificationGroup 3: 300 MW unitsFuel switching

The above 3 groups account for 75% of total capacity in North China

- Selection of model units/technologies, collection of detailed data, thereafter implementation of site survey
- Price of fuel (gas price is about 8 times higher than coal)

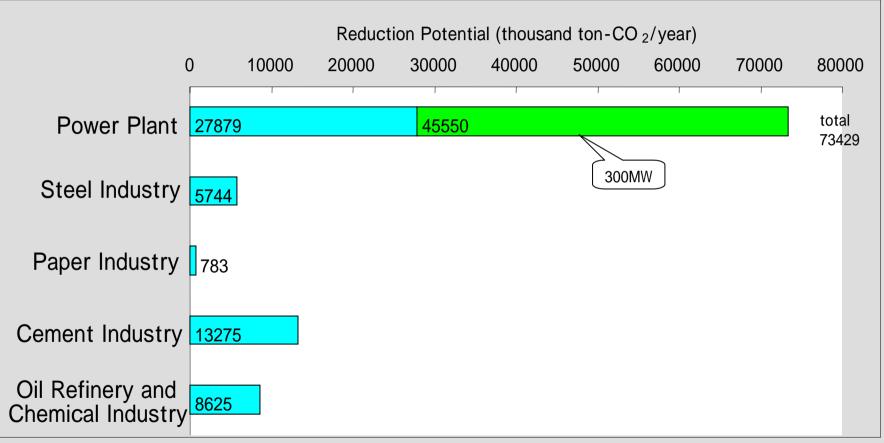
Estimation of CO₂ reductions

- Calculate baseline emissions "Existing actual emissions" are used as baseline
- Estimate CO₂ emission reductions of model units by applying state-of-the-art Japanese technologies (with some exception)
- Apply model units' reduction to all others units

Summary of CO₂ emission reduction potential (Power Plants)

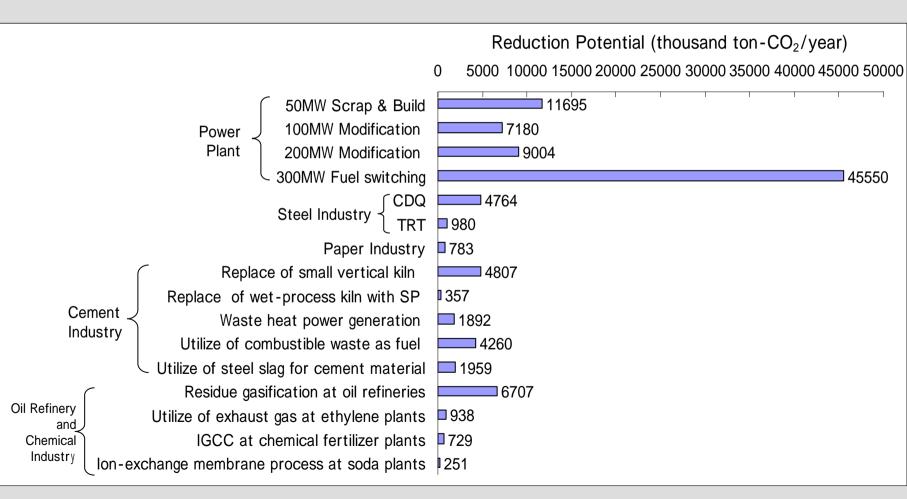
50 MW	100MW	200MW	300MW	Total
Scrap & Build(50MW to 200MW)	Retrofit	Retrofit	Fuel switching from coal to natural gas	
11,695	7,180	9,004	45,550	73,429

Unit 1000 t/y


Other energy intensive industries (Iron & steel)

Technologies Japanese state-of-the-art technology	Targeted plants
Coke Dry	Plant capacity bigger than 1 Mt
quenching	of Pig Iron, but excludes plants
(CDQ)	already installed them
Top Pressure	Blast furnaces exceeding 1000
Recovery Turbine	M3, but excludes plants
(TRT)	already installed them

Other energy intensive industries (Cement, Chemicals and Paper)


- Cement Japanese state-of-the-art technology
 - Replacement of small vertical kiln with fluidized bed kiln
 - -Replacement of wet-process kiln with suspension preheater
 - -Waste heat power generation
 - -Utilization of combustible waste as fuel
 - -Utilization of steel slag for cement material
- Oil refinery and chemical industry Japanese state-of-the-art technology -Oil refinery (Gasification of oil residue and power generation)
 - -Ethylene (Gas turbine installation and utilization of exhaust gas for cracking furnace)
 - -Chemical fertilizer (Coal gasification combined power generation) -Clor-alkali (Replacement of diaphragm process with ion-exchange membrane process
- Paper Japanese state-of-the-art technology -Replacement of main motors/main auxiliary motors with variable speed motors -Installation of closed type dryer hood and waste heat recovery equipment for dryer and other remodeling

Comparison of CDM reduction potential by industry

Paper industry : Reduction potential is $394 \sim 1172$ thousand ton-CO₂. 783 thousand ton-CO₂ showed above is average.

Comparison of CDM reduction potential by technology

Cost estimation methodology

$$\sum_{i=1}^{n} \frac{(SB_i - EB_i - MB_i)}{(1+r)^i}$$

(Baseline emission)

$$\sum_{i=1}^{n} \frac{(SC_{i} - EC_{i} - MC_{i})}{(1+r)^{i}} - I_{0}$$

(Emission after CDM project)

$$\sum_{i=1}^{n} \frac{(EC_{i} - EB_{i})}{(1+r)^{i}} + I_{0}$$

$$\frac{\sum_{i=1}^{n} \frac{(EC_{i} - EB_{i})}{(1+r)^{i}} + I_{0}}{\sum_{i=1}^{n} Y_{i}}$$
 (Denominator means CO₂ reduction in year i)

(Carbon reduction cost per ton)

 SB_i : revenue, EB_i : fuel cost, MB_i : maintenance cost of Baseline case SC_i : revenue, EC_i : fuel cost , MC_i : maintenance cost of CDM case I_0 : initial investment cost of the project

Reduction potential and cost (1)

Power Plant	Reduction Potential 1,000t- CO ₂ /y	Cost,\$/t - CO ₂ 7 year crediting period	Cost, \$/t - CO ₂ 14 year crediting period
50 MW	11,695	8.3	2.5
Scrap & Build			
100 MW	7,180	19.4	8.0
Retrofit			
200 MW	9,004	28.3	12.7
Modification			
300 MW	45,550	61.4	41.4
Fuel switching	, 		
Total	73,429		

Reduction potential and cost (2)

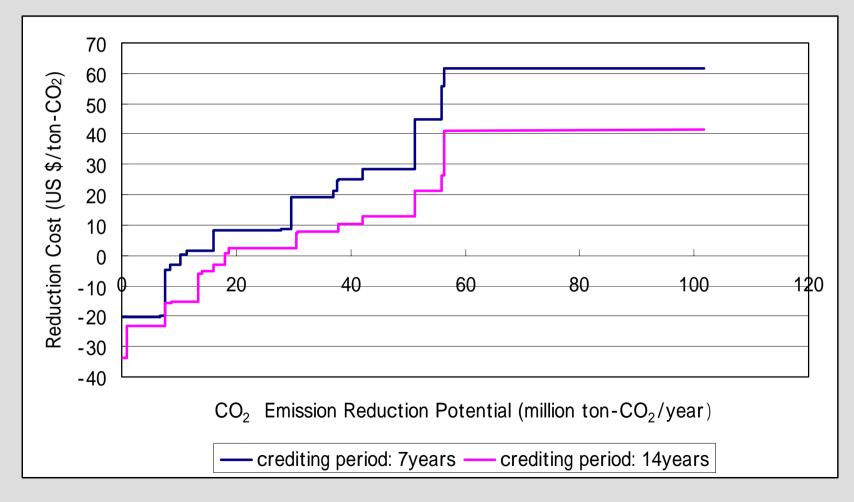
Iron & Steel	Reduction Potential 1,000t- CO ₂ /y	Cost, \$/t - CO ₂ 7 year crediting period	Cost, \$/t - CO ₂ 14 year crediting period
CDQ	4,764	1.6	-15.3
TRT	980	0.5	-15.6
Total	5,744		

Reduction potential and cost (3)

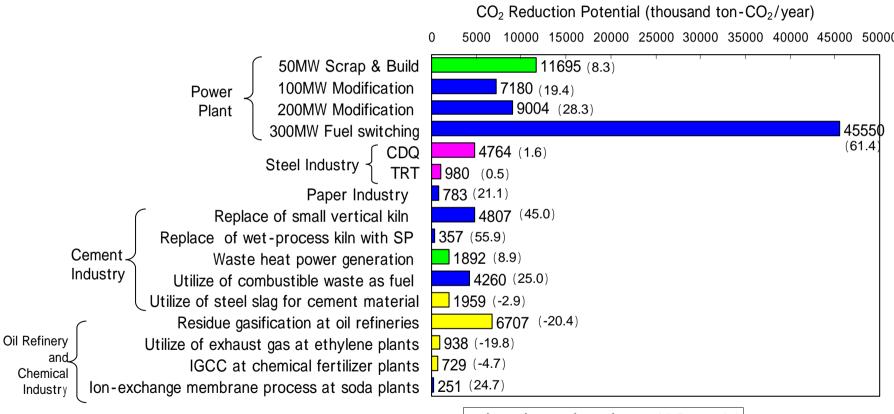
Paper & Pulp	Reduction Potential 1,000t- CO ₂ /y	Cost,\$/t - CO ₂ 7 year crediting period	Cost, \$/t - CO ₂ 14 year crediting period
Replacement of main motors etc.	394 - 1,172	21.1	0.91

Reduction potential and cost (4)

Cement	Reduction Potential 1,000t- CO ₂ /y	Cost,\$/t - CO ₂ 7 year crediting period	Cost, \$/t - CO ₂ 14 year crediting period
Replace of small vertical kiln with fluidized bed kiln	4,807	45.0	21.4
Replace of wet- process kiln with Suspension Pre- heater	357	55.9	26.2
Waste heat power generation	1,892	8.9	-5.2
Utilize of combustible waste as fuel	4,260	25.0	10.2
Utilize of steel slag for cement material	1,959	-2.9	-3.1


Keio University/Tsingua University

OF 12:24 Drate at 4000 0000


Reduction potential and cost (5)

Oil refinery,	Reduction Potential	Cost, \$/t	Cost, \$/t
Chemicals	1,000 CO ₂ t/y	7 year crediting period	14 year crediting period
Oil refinery (Gasification of oil residue and power generation)	6,707	-20.4	-23.3
Ethylene (Gas turbine installation and utilization of exhaust gas for cracking furnace)	938	-19.8	-33.5
Chemical fertilizer (Coal gasification combined power generation)	729	-4.7	-5.8
Clor-alkali Replacement of diaphragm process with ion-exchange membrane process	251	24.7	7.5

Marginal Cost Curve of CDM in China

Reduction Potential corresponding to credit prices

□ \$0 ■ \$4.5 □ \$9 ■ \$18 ■ All Potential

Tentative Conclusion

- Potential CO2 emission reduction in five major sectors is around 100 Mt (Physical potential)
- Among them, power generation sector is the largest (especially at 300 MW units)
- When considering cost, picture changes drastically
- Very few commercially viable projects exist (at zero cost, total reduction will be only 10 Mt, at \$4.5, still 16 Mt even under our baseline emission figures)
- Fuel switching projects in power sector will not be feasible due to high cost of natural gas
- Public funding is essential for promotion of CDM projects in China

Further works

- Elaborate baseline emissions in view of discussions at the Executive Board
- Revisiting selection of model plants
- Improve data quality (other than power plants)
- Compare with other top down models
- Take into consideration of transaction costs
- Explore applicability of our methodology to other developing countries