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1 Dynamic programming problem in economics

1. The problem of dynamic programming that appears often in economics takes the following
form: Find {z;} and {v;} so as to maximise

T-1

Z atf(xb Ut, t) + S(xT)
t=0
SUbjeCt to Ti+1 = g(.’Et,Ut,t),t = 07 1 27 T 7T -1

given f, g, S, {ay} and xy.

2. For such a problem, Bellman’s principle of optimality holds:

The principle of optimality: An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision. [ Bellman
(1957), p.83. |

This principle justifies solving the problem in the reverse order, starting from the end and going
back to the beginning of the planning period.

3. The maximised present value of the objective is a function of x representing the initial
state. Name it the value function. The value function of the last period problem is

Vi, T) = 5(x)
This maximisation problem is trivial, nothing being left unknown given the initial condition, .

4. The second from the last period problem turns out to be to find x7 and vy_1 to maximise

ar_1f(zr_1,v7-1,T — 1)+ V(zp,T)

subject to xp = g(zp_1,vr—1,T — 1)



given the initial condition xp_; = x. The value function of period T'— 1 will be

V(z, T — 1) = max[ap_1 f(x,vp_1,T — 1) + V(xp,T)]
= O‘T—lf('ra U;’fh T- 1) + V(l’},T)

The asterisk indicates the maximising values.

5. At an arbitrary stage t between 0 and T, the problem is to find z;y1 and v; to maximise

arf (e, v, t) + V(@e1,t +1)

subject to  xy11 = g(xy, v, 1)
given the initial condition x; = z. The value function of period ¢ will be

V<x7t> = atf(%”ik,t) + V<x;<+17t + 1)

6. From the successive definitions of value functions, it is clear that the value function of
period t has another expression

T-1
Vi, t) = arf(z,0f,t) + Y asflay,vy,8) + S(zp)
s=t+1

That is the maximum value of the objective for period ¢

T-1

Z asf(zs,vs,s) + S(xr)

s=t

with respect to {zs} and {vs} subject to
Tst1 = g(Ts,vs,8), s=t,t+1,t+2,---,T—1

given the initial condition z; = z.

7. The maximum solution for the two period problem in paragraph 5 must satisfy two condi-
tions: the maximum condition,

atf?)<x7 Ut, t) + Vx<xt+17 i+ 1)gv(x7 vt7t) =0
and the tangency condition following from the envelope theorem,
Va(2,t) = ot fulm, vty t) + Va(@e1,t + 1)ga (@, v, T)

or, inserting the maximum condition,

V.’I:(x7t) - Oétfa;(.'E,Ut,t) — _atf’v('ravt;t)
gm(l’;vt;t) 9v($>vt7t)

See Samuelson (1947), p. 34, for the envelope theorem.



8. The two period maximisation problem may be written in a simpler form using the current

value function:
V(z,t)

Qi

W(z,t) =
Two period relation is

W(z,t) = f(z,vf,t) + ,3t+1W(332‘+1, t+1)
Qt1

Biy1 = ”

The problem now is to find xy4+1 and v; to maximise

f(@e,v0,t) + BrpaW (g1, + 1)
subject to  xy+1 = g(xy, vy, t)
given the initial condition x; = . The two conditions that the solution must satisfy are
fo(@, 01, 1) + BraWa(@es1,t + 1) go(, ve, ) = 0
W.’I)(x7 t) = fx(x7 Ut, t) + /Bt—i—lWac(xt-i-l, t+ 1>gx(x7 Ut, t)
or, using the maximum condition

Wx(x7t>_fx(x7vt7t) _ f?)(xvvtvt)

g$<x7vt7t> g’l)(xvvtat>

9. Stochastic problem arises when function g(x¢,v,t) defining the constraint is a stochastic
function of v;. Consider in this case maximisation of the mathematical expectation of the
objective. The problem now is to find {z;} and {v;} to maximise

T-1
E Z arf(ze,ve,t + 1) + S(zp)
t=0
subject to  xy+1 = g(xy,vp,t),t =0,1,2,--- T — 1

given the initial condition zg. The solutions for {z;} and {v;} are stochastic processes.

10. The two period problem is to find ;41 and vy to maximise

fxe, v, t) + B EIW (2441, t + 1)]

subject to  x411 = g(xy, v, 1)

given the initial condition z; = z.
Solve the two period problem successively in the reverse order, taking x as non-stochastically
given at each stage. The conditions that the maximum solution must satisfy are

fo(z, v, t) + B EWg (241, t + 1) go(x, v, 1)) =0

Wm(l’,t) = fm(.’L‘,Ut,t) + Bt+1E[Wm(xt+17t + 1)giv(x7vt7t)]

v; is a non stochastic function of the realised value of x, and is stochastic because x; is stochastic.



11. Considered from the economic point of view, the individual knows what has happened up
to the time of decision making. That is, in period ¢, he knows the value of zg, s = ¢,t—1,t—2,---.
Given that information, the individual maximises the expected utility of the future consumption,
under the stochastic budget constraint. Of the values of {z;} that he knows of the past, only
x¢ matters for the decision of period ¢. The individual determines v; depending on the realised

value of x;.

12. If function f(z,v,t) or S(x) is stochastic and g(z¢,v¢,t) is not, we have also to con-
sider maximisation of the mathematical expectation. Despite this apparent similarity to the
stochastic problem, however, the problem is essentially non-stochastic, the solution being non-
stochastic.

2 The Theory of Lifetime Portfolio Selection

1. Consider a household earning y;,t = 0,1, 2, - - - of labour income and planning consumption
and asset holdings for T periods. It can hold riskless asset with one period rates of return ¢,
t=0,1,2,---, or risky asset with one period rates of return z;, t = 0,1,2,---. We suppose y;
and z; to be random. The labour income and the rates of return are determined in the market,
and the household behaves as price-taker. Its objective is to maximise the expected utility of
future consumptions and of the wealth at the end of planning period.

2. The household’s planning problem is one of stochastic dynamic programming. That is, to
find {z:}, {a:} and {¢;} so as to maximise

T-1

E Y agu(er) + S(zr)
=0

subject to

Tp1 = [(147) + (20 — me)ag)(ze +ye — )
t=0,1,2,---, T -1

given {ay},{y:} and the initial condition x.

3. The two period problem is to find z;41, ¢; and a; to maximise
u(ct) + ,Bt+1E[W(CCt+1, t+ 1)
subject to  xpr1 = [(1+ 1) + (20 — re)ag](xe + y1 — 1)

given y¢ and the initial condition x; = z.
The solution must satisfy

EWg(zig1,t 4+ 1)gal(x, ye, c1,04,1)] =0
ue(ct) + Bir1 E[Wa(xps1,t + 1) ge(x, ye, ¢ty ar, t)] = 0
Wa(z,t) = Bip1 EWa(zeg1,t + 1) gz(x, ys, 1, ag, t)]



From the definition of the constraint, it is obvious that
ga(-r: Yt, Ct, Qg t) = (Zt - Tt)[.’E + Yyt — Ct]
—9e(T, Yts ¢ty at, 1) = Ga (T, Y, e, 1) = (1 +7¢) + (2 — 1) ar
Inserting these into the conditions for the maximum solution, we have

E[Wm($t+1, t+ 1)<Zt — Tt)] =0
ue(ct) = Ber1 EWa (a1, 6+ 1) (1 + 1) + (26 — 1) ag)] = 0
Wx($7 t) = ﬁt+1E[Wx($t+1, t+ 1)((1 + T’t) + (Zt — rt)at)]

From the last two equalities, we have
Wiz, t) = uc(ey)

and by analogy
We (i1, + 1) = ue(cpr1)

Inserting this equality into the first two of the conditions for the maximum solution, and rear-

ranging terms, we have

El(zt — r)uc(ct+1)] = 0
uc(cr) — (1 +1¢)BeEluc(ct+1)] — aBeE[(z — re)uc(ce+1)] = 0

Therefore, we finally have

ue(ct)
Sy a—
BiEluc(cit1)] '
4. This relation may be viewed also as
14+ p; 1
E = 1 = —
[uc(ct1)] 1+ uc(ct), + 0t 3,
or L+
Uc(Ctv1) = . +Zuc(6t) + €&

and if Pt = T,

uc(ctr1) = uclct) + €

5. Samuelson (1969) showed that if the household has no labour income and no bequest, and
if the utility function is isoelastic with positive elasticity less than one, that is, the degree of
relative risk aversion is a positive constant less than one:

u(c) =c¢
then, the value function also is isoelastic, the elasticity being equal to that of the utility function:

Wiz, t) = Agx'™°
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